The Cheletropic Addition of Dichlorocarbene to 2-Phenylsulfonyl-2-azabicyclo[3.2.1]octa-3,6-diene and Its 8-Substituted Derivatives

NOTES

Hiroo Inoue,* Kazuhiko Tokisato, and Katsumi Umano
Department of Applied Chemistry, College of Engineering, University of Osaka Prefecture,
Sakai, Osaka 591
(Received August 31, 1981)

Synopsis. It was found that dichlorocarbene undergoes exo addition preferentially on the C_3 – C_4 double bond of 2-phenylsulfonyl-2-azabicyclo[3.2.1]octa-3,6-diene and endo addition on that of 2-phenylsulfonyl-syn-8-benzoyl-oxy-2-azabicyclo[3.2.1]octa-3,6-diene.

Recently we have discovered that the 1,3-dipolar cycloadditions of phenylglyoxylonitrile oxide to 2-phenylsulfonyl-2-azabicyclo[3.2.1]octa-3,6-diene (1) and 2-phenylsulfonyl-syn-8-benzoyloxy-2-azabicyclo[3.2.1]-octa-3,6-diene (3) take place selectively with an exo attack on the C_6-C_7 double bond. In order to explore further the reactivity of the C_3-C_4 and C_6-C_7 double bonds, particularly in their exo and endo sides, the addition of dichlorocarbene was investigated with azabicyclic dienes, 1—3. Herein, we wish to report our findings on these reactions.

(anti)
$$R_1$$
 R_2 (syn)
1: $R_1 = R_2 = H$
2: $R_1 = PhCOO, R_2 = H$
3: $R_1 = H, R_2 = PhCOO$

The reaction of diene 1 with dichlorocarbene, generated by the usual phase-transfer method,2) afforded the 1:1 exo adduct (4) in a high yield after 30 min, as Table 1 shows. In a prolonged reaction, the 1:2 adduct (5) was produced by the subsequent addition of dichlorocarbene to adduct 4. The reaction with diene 2, in which the exo side of the C₆-C₇ double bond was blocked by the benzoyloxyl group, resulted in the formation of only the 1:1 exo adduct (6), even after 72 h, and the 1:2 adduct (6') was not obtained at all. This indicates that the endo side of the C6-C7 double bond is much less reactive. On the other hand, when the exo side of the C3-C4 double bond was blocked by the benzoyloxyl group, the addition of dichlorocarbene was diverted to the endo side to afford the 1:1 endo adduct (7), together with the 1:2 adduct (8), as Table 1 shows.

Table 1. The yields of the products in the addition of dichlorocarbene to dienes 1—3

Dienes	Time/h	Adduct(yield/%)a)
1	0.5	4 (84), 5 (5)
1	3	4 (65), 5 (23)
1	72	4 (33), 5 (45)
2	3	6 (91)
2	72	6 (85)
3	3	7 (77), 8 (20)
3	72	7 (47), 8 (30)

a) Based on the dienes.

Z

Next, the reactions of dienes 1-3 with dichlorocarbene were compared with those with phenylglyoxylonitrile oxide as a 1,3-dipole. The 1,3-dipolar addition to 2 in tetrahydrofuran at 0 °C afforded two exo adducts, 9 and 10, in 47 and 22% yields respectively after 3 h. This phenomenon of the exo prevalence, which is observed even in the existence of the benzoyloxyl group in the C₆-C₇ side of 2, agreed with the results in the cases of 1 and 3 reported previously.1) As has been described above, we have found that dichlorocarbene exhibits an exo or endo attack preferentially on the C3-C4 double bond of dienes 1-3, while phenylglyoxylonitrile oxide exhibits an exo attack on their C6-C7 double bonds, and that the endo side of the C3-C4 double bond is less reactive to dichlorocarbene than its exo side. Thus, the addition of dichlorocarbene to dienes 1-3 is governed by the steric effect of hydrogen or the substituent at the 8-position.

Experimental

The melting points are uncorrected. The ¹H NMR spectra were taken at room temperature with a Hitachi R-24A spectrometer, using tetramethylsilane as the internal standard. The IR spectra were taken with a Hitachi 216 grating infrared spectrometer.

Materials. Dienes 1—3 were prepared from nor-

bornadiene and 7-benzoyloxynorbornadiene according to the published procedures.³⁾ **2**: mp 121.5—122 °C; IR (KBr) 1715 cm⁻¹ (CO), 1345, 1180 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 2.76 (m, 1H, 5-H), 4.82 (brs, 2H, 1-H and 8-H), 5.15 (m, 2H, 4-H and 7-H), 6.09 (dd, 1H, $J_{6,7}$ =5.3 Hz, $J_{5,6}$ =2.3 Hz, 6-H), 6.28 (d, 1H, $J_{3,4}$ =9.0 Hz, 3-H), 6.88—8.02 (m, 10H, aromatic). Found: C, 65.67; H, 4.63; N, 4.08%. Calcd for 2₂₀H₁₇NO₄S: C, 65.40; H, 4.63; N, 3.81%. **3**: mp 114.5—115 °C; IR (KBr) 1710 cm⁻¹ (CO), 1340, 1165 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 2.75 (m, 1H, 5-H), 4.71 (m, 1H, 1-H), 5.07 (m, 2H, 4-H and 8-H), 5.39 (dd, 1H, $J_{6,7}$ =6.0 Hz, $J_{1,7}$ =3.0 Hz, 7-H), 6.09 (dd, 1H, $J_{6,7}$ =6.0 Hz, $J_{5,6}$ =3.3 Hz, 6-H), 6.57 (d, 1H, $J_{3,4}$ =8.0 Hz, 3-H), 6.92—8.00 (m, 10H, aromatic). Found: C, 65.41; H, 4.64; N, 4.11%. Calcd for C₂₀H₁₇NO₄S: C, 65.40; H, 4.63; N, 3.81%.

General Procedure for the Addition of Dichlorocarbene to Dienes 1—3. A 50% aqueous sodium hydroxide solution (6.5 g) was stirred, drop by drop, into a solution of dienes (2.72 mmol) in chloroform (10 g) with benzyltriethylammonium chloride (50 mg) for 30 min at room temperature. After a definite period of stirring, the reaction mixture was diluted with water and extracted with chloroform. After the removal of the chloroform in vacuo, the residue was chromatographed on a silica-gel column, using benzene, hexane, or ethyl acetate as the eluant.

Reaction with 1. Two adducts, 4 and 5, were obtained. 4: mp 132.5—134 °C; IR (KBr) 1335 and 1168 cm⁻¹ (SO₂); ¹H NMR (C_6D_6) δ 1.10 (m, 1H, 9-H_{anti}), 1.48 (dd, 1H, $J_{3.5}$ =10.0 Hz, $J_{5.6}$ =3.0 Hz, 5-H), 2.3 (d, 1H, $J_{98.98}$ =11.3 Hz, 9-H_{syn}), 2.32 (m, 1H, 6-H), 3.2 (d, 1H, $J_{3.5}$ =10.0 Hz, 3-H), 4.48 (m, 1H, 1-H), 5.40 (dd, 1H, $J_{7.8}$ =5.7 Hz, $J_{1.8}$ =2. 7Hz, 8-H), 5.64 (dd, 1H, $J_{7.8}$ =5.7 Hz, $J_{7.9}$ =2.3 Hz, 7-H), 6.75—8.00 (m, 5H, aromatic). Found: C, 51.07; H, 3.96; N, 4.55%. Calcd for $C_{14}H_{13}NO_2SCl_2$: C, 50.92; H, 3.97; N, 4.24%. 5: mp 165—166.5 °C; IR (KBr) 1360 and 1172 cm⁻¹ (SO₂); ¹H NMR (C_6D_6) δ 1.24 (d, 1H, $J_{3.5}$ =10.7 Hz, 5-H), 1.32 (d, 1H, $J_{7.9}$ =7.3 Hz, 7-H), 1.69 (d, 1H, $J_{7.9}$ =7.3 Hz, 9-H), 1.80 (m, 2H, 10-CH₂), 2.17 (m, 1H, 6-H), 3.13 (d, 1H, $J_{3.5}$ =10.7 Hz, 3-H), 4.38 (m, 1H, 1-H), 6.67—8.10 (m, 5H, aromatic). Found: C, 43.41; H, 2.91; N, 3.36%. Calcd for $C_{15}H_{13}NO_2SCl_4$: C, 43.61; H, 3.17; N, 3.39%.

Reaction with 2. The adduct 6 was obtained: mp 136-137 °C; IR (KBr) 1720 cm⁻¹ (CO), 1355, 1170 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 2.22 (dd, 1H, $J_{3,5}=10.0$ Hz, $J_{5,6}=3.0$ Hz, 5-H), 3.27 (d, 1H, $J_{3,5}=10.0$ Hz, 3-H), 3.30 (m, 1H, 6-H), 4.91 (m, 1H, 1-H), 5.80 (m, 2H, 8-H and 9-H), 6.35 (dd, 1H, $J_{7,8}=5.3$ Hz, $J_{6,7}=2.3$ Hz, 7-H), 7.09—8.20 (m, 10H, aromatic). Found: C, 56.17; H, 3.66; N, 3.10%. Calcd for C₂₁H₁₇NO₄SCl₂: C, 56.01; H, 3.78; N, 3.11%. The small values of the coupling constants between H-5 and H-6 for 4 and 6 and between H-1 (H-6) and H-9 (H-7) for 5 indicated the exo configurations of 4, 5, and 6.

Reaction with 3. The adducts 7 and 8 were obtained. 7: mp 130—130.5 °C; IR (KBr) 1720 cm⁻¹ (CO), 1355,

1170 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 1.93 (dd, 1H, $J_{5,6}$ = 8.0 Hz, $J_{3,5}$ =10.7 Hz, 5-H), 3.66 (d, 1H, $J_{3,5}$ =10.7 Hz, 3-H), 3.48 (m, 1H, 6-H), 4.49 (m, 1H, 1-H), 5.11 (t, 1H, $J_{1,8}$ = $J_{7,8}$ =4.7 Hz, 8-H), 6.00 (m, 2H, 7-H and 9-H), 6.94 —8.00 (m, 10H, aromatic). Found: C, 56.13; H, 3.65; N, 3.11%. Calcd for C₂₁H₁₇NO₄SCl₂: C, 56.01; H, 3.78; N, 3.11%. 8: mp 185—186 °C; IR (KBr) 1720 cm⁻¹ (CO), 1360, 1170 cm⁻¹ (SO₂); ¹H NMR [(2:1)C₆D₆-CDCl₃] δ 1.67 (dd, 1H, $J_{3,5}$ =10.7 Hz, $J_{5,6}$ =9.3 Hz, 5-H), 2.21 (d, 1H, $J_{7,9}$ =8.0 Hz, 7-H), 2.41 (d, 1H, $J_{7,9}$ =8.0 Hz, 9-H), 2.91 (dd, 1H, $J_{6,10}$ =4.7 Hz, $J_{5,6}$ =9.3 Hz, 6-H), 3.14 (d, 1H, $J_{3,5}$ =10.0 Hz, 3-H), 4.36 (d, 1H, $J_{1,10}$ =4.7 Hz, 1-H), 5.67 (t, 1H, $J_{1,10}$ = $J_{6,10}$ =4.7 Hz, 10-H), 6.74—7.90 (m, 10H, aromatic). Found: C, 49.55; H, 3.09; N, 2.65%. Calcd for C₂₂H₁₇NO₄SCl₄: C, 49.55; H, 3.09; N, 2.63%. The large values of the coupling constants between H-5 and H-6 for 7 and 8 indicated the *endo* configurations of 7 and 8.

Reaction of 2 with Phenylglyoxylonitrile Oxide. tion of a mixture of 2 (1.63 mmol) and α -chloro- α -(hydroxyimino)acetophenone (1.63 mmol) was cooled in an ice bath. Into the cooled solution, a solution of triethylamine (2.12) mmol) in tetrahydrofuran (20 cm³) was then added and stirred. After 2 h, a precipitate was removed by filtration, and the filtrate was evaporated to dryness under reduced pressure. The residue was chromatographed on a silicagel column, using (40:1) benzene-ethyl acetate as the eluant, to give two adducts, 9 (0.39 g, 47%) and 10 (0.19 g, 22%), puls a 23% recovery of 2. 9: mp 164-165 °C; IR (KBr) 1730 cm⁻¹ (CO), 1355, 1170 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 3.04 (d, 1H, $J_{1,10}$ =7.3, 1-H), 3.96 (d, 1H, $J_{2,6}$ =9.3 Hz, 6-H), 5.07 (m, 4H, 2-H, 7-H, 10-H, and 11-H), 6.51 (d, 1H, $J_{9,10}$ =7.7 Hz, 9-H), 6.88—8.17 (m, 15H, aromatic). Found: C, 65.14; H, 4.22; N, 5.25%. Calcd for $C_{28}H_{22}$ - N_2O_6S : C, 65.37; H, 4.28; N, 5.44%. **10**: mp 147—148 °C; IR (KBr) 1725 cm^{-1} (CO), 1360, 1175 cm^{-1} (SO₂); $^{1}\mathrm{H}$ NMR (CDCl3) δ 3.18 (d, 1H, $J_{7,8}\mathrm{=}7.7~\mathrm{Hz},~7\mathrm{\text{-}H}),~4.38$ (d, 1H, $J_{2,6}$ =9.3 Hz, 6-H), 4.86 (m, 2H, 1-H and 11-H), 5.10 (d, 1H, $J_{2,6}$ =9.3 Hz, 2-H), 5.29 (dd, 1H, $J_{7,8}$ =7.7 Hz, $J_{8,9}$ =8.0 Hz, 8-H), 6.41 (d, 1H, $J_{8,9}$ =8.0 Hz, 9-H), 6.98-8.11 (m, 15H, aromatic). Found: C, 65.18; H, 4.12; N, 5.27%. Calcd for $C_{28}H_{22}N_2O_6S$: C, 65.37; H, 4.28; N, 5.44%. The large difference in the chemical shifts between 2-H and 6-H indicated the orientation of adduct

References

- 1) K. Umano, S. Mizone, K. Tokisato, and H. Inoue, Tetrahedron Lett., 1981, 73.
- 2) G. C. Joshi, N. Singh, and L. M. Pande, *Tetrahedron Lett.*, 1972, 1461.
- 3) A. C. Oehlschlager and L. H. Zalkow, J. Org. Chem., 30, 4205 (1965); M. Klaus and H. Prinzbach, Angew. Chem., Int. Ed. Engl., 10, 273 (1971); K. Umano, H. Taniguchi, H. Inoue, and E. Imoto, Tetrahedron Lett., 1979, 247.
- 4) H. Taniguchi, T. Ikeda, and E. Imoto, *Bull. Chem. Soc. Jpn.*, **51**, 1859 (1978).